Descripción técnica del sistema de IA
Resumen general
Este artículo proporciona transparencia técnica sobre cómo se construyen, prueban y operan los sistemas de IA de ISMS Copilot. Estos detalles demuestran nuestro compromiso con el desarrollo de una IA responsable a través de prácticas de implementación verificables.
A quién va dirigido
Este artículo es para:
Equipos de seguridad y cumplimiento que evalúan los controles de gobernanza de la IA
Auditores que evalúan la implementación del sistema de IA frente a las políticas
Gestores de riesgos que requieren transparencia técnica para los sistemas de IA
Usuarios técnicos que desean comprender la arquitectura de la IA
Arquitectura de Conocimiento de Marcos Dinámicos
ISMS Copilot utiliza la inyección dinámica de conocimiento de marcos para fundamentar las respuestas de la IA en conocimientos de cumplimiento verificado. A partir de la versión 2.5 (febrero de 2025), esto sustituye a la anterior arquitectura RAG (generación aumentada por recuperación) por un enfoque más fiable y eficiente en el uso de tokens.
Cómo funciona la inyección de conocimiento de marcos
Componentes de la arquitectura:
Capa de detección de marcos: La coincidencia de patrones basada en Regex detecta menciones a marcos en las consultas de los usuarios (ISO 27001, SOC 2, GDPR, HIPAA, CCPA, NIS 2, DORA, ISO 42001, ISO 27701)
Capa de inyección de conocimiento: Carga dinámicamente solo el conocimiento del marco relevante en el contexto de la IA basándose en los marcos detectados
Capa de generación: Los modelos de lenguaje extensos (LLM) de los proveedores de IA empresariales reciben el conocimiento del marco antes de generar las respuestas
Mecanismo de validación: El conocimiento del marco proporcionado a la IA garantiza que las respuestas se fundamenten en requisitos de cumplimiento reales, no en conjeturas probabilísticas
La inyección dinámica de conocimiento de marcos elimina las alucinaciones al proporcionar a la IA el conocimiento real del marco antes de que responda. La detección ocurre antes del procesamiento de la IA (no se basa en IA), lo que garantiza una fiabilidad del 100% cuando se mencionan marcos.
Por qué la inyección dinámica es importante para el cumplimiento:
Elimina las alucinaciones: La IA recibe conocimiento verificado del marco antes de responder, evitando números de control y requisitos fabricados
Eficiencia de tokens: Solo se cargan los marcos relevantes (~1-2K tokens) en lugar de enviar todo el conocimiento (~10K tokens) en cada solicitud
Detección fiable: La coincidencia de patrones Regex (no basada en IA) garantiza que nunca se pasen por alto las menciones a los marcos
Arquitectura extensible: Se añaden nuevos marcos con una única definición de objeto, sin necesidad de reentrenamiento del modelo
Soporte multimarco: Gestiona consultas que mencionan varios marcos simultáneamente (p. ej., "Mapear ISO 27001 a SOC 2")
Implementación Técnica
Proceso de detección:
El usuario envía una consulta (p. ej., "¿Qué es el Anexo A.5.9 de ISO 27001?")
La detección de marcos escanea la consulta en busca de coincidencias de patrones (ISO 27001, GDPR, SOC 2, etc.)
Los marcos coincidentes activan la inyección de conocimiento
El conocimiento del marco relevante se añade al prompt del sistema de IA antes de la generación
Marcos compatibles (v2.5):
ISO 27001:2022 — Sistema de Gestión de Seguridad de la Información
ISO 42001:2023 — Sistema de Gestión de Inteligencia Artificial
ISO 27701:2025 — Sistema de Gestión de Información de Privacidad
SOC 2 — Control de Organización de Servicios (Criterios de Servicios de Confianza)
HIPAA — Ley de Portabilidad y Responsabilidad del Seguro Médico
GDPR — Reglamento General de Protección de Datos
CCPA — Ley de Privacidad del Consumidor de California
NIS 2 — Directiva sobre Seguridad de las Redes y de la Información
DORA — Ley de Resiliencia Operativa Digital
Se añaden continuamente más marcos. Las próximas prioridades incluyen NIST 800-53, PCI DSS y normativas regionales adicionales. Consulte el Registro de cambios del producto para obtener actualizaciones.
Evolución de RAG a la Inyección Dinámica
Enfoque anterior (pre-v2.5): Arquitectura RAG
La búsqueda semántica recuperaba fragmentos de documentación relevantes
La calidad de la recuperación variaba según la formulación de la consulta
Se enviaban los ~10K tokens de conocimiento en muchas solicitudes
Centrado principalmente en ISO 27001
Enfoque actual (v2.5+): Inyección dinámica de marcos
La detección basada en Regex garantiza una identificación fiable del marco
Solo se cargan los marcos relevantes (eficiente en tokens)
Soporta 9 marcos simultáneamente
Diseño extensible para adiciones rápidas de marcos
Si ve referencias a la "arquitectura RAG" en documentación antigua o fuentes externas, tenga en cuenta que ISMS Copilot hizo la transición a la inyección dinámica de conocimiento de marcos en la versión 2.5 (febrero de 2025). El nuevo enfoque es más fiable y soporta muchos más marcos.
Proveedores de IA y protección de datos
Utilizamos proveedores de IA de nivel empresarial con acuerdos estrictos de protección de datos.
Proveedores actuales
Modelos de IA de backend:
OpenAI GPT-5.2 (predeterminado) — Razonamiento avanzado y análisis de cumplimiento
Anthropic Claude Opus — Integración de backend para la redacción de políticas con matices
xAI Grok — Proveedor alternativo para diversos casos de uso
Mistral AI — Proveedor con sede en la UE para el Modo de Protección de Datos Avanzada
OpenAI GPT-5.2 es el proveedor predeterminado actual que impulsa todas las conversaciones. Se integran proveedores de IA adicionales en el backend, y el lanzamiento de la interfaz de usuario para la selección de modelos está previsto para 2026. Todos los modelos acceden a la misma base de conocimientos de cumplimiento especializada a través de la inyección dinámica de marcos, lo que garantiza una orientación consistente y fiable.
Acuerdos de retención de datos cero
Todos los proveedores de IA operan bajo acuerdos de retención de datos cero (ZDR):
Sus datos NUNCA se utilizan para entrenar modelos de IA. Los acuerdos ZDR garantizan que sus conversaciones, documentos cargados y el contenido del espacio de trabajo permanezcan confidenciales y no sean retenidos por los proveedores de IA más allá del procesamiento de sus solicitudes.
Términos del acuerdo ZDR:
Sin retención de datos de usuario más allá del procesamiento de la solicitud
Sin entrenamiento de modelos con contenido del cliente
Transferencias de datos conformes con el GDPR con Cláusulas Contractuales Tipo (SCC)
Cumplimiento de los estándares de seguridad empresarial
Para obtener información detallada sobre los encargados del tratamiento y los flujos de datos, consulte nuestro Registro de actividades de tratamiento.
Requisitos de desarrollo
Cada componente del sistema de IA se desarrolla conforme a requisitos documentados que definen el comportamiento esperado, las restricciones de seguridad y los umbrales de rendimiento.
Requisitos funcionales
Definición del alcance:
La IA proporciona asistencia para el cumplimiento, no asesoramiento legal
Límites de las tareas: generación de políticas, análisis de brechas, preparación de auditorías, revisión de documentos
Cumplimiento de restricciones: sin acceso a internet, sin ejecución de código, sin procesamiento de datos personales más allá del uso de la plataforma
Requisitos de rendimiento
Objetivos de calidad:
Precisión de las respuestas fundamentada en fuentes recuperadas con citación
Ventana de contexto suficiente para el análisis de cumplimiento de múltiples documentos
Tiempo de respuesta optimizado para uso interactivo (objetivo: menos de 10 segundos)
Límites de velocidad definidos por nivel de usuario para garantizar la estabilidad del sistema
Requisitos de seguridad
Mitigación de alucinaciones:
Fundamentación en fuentes: las respuestas deben hacer referencia a la documentación recuperada
Validación de recuperación: respuestas verificadas contra el contenido original
Puntaje de confianza: se reconoce la incertidumbre cuando las fuentes son ambiguas
Descargos de responsabilidad de verificación del usuario: todos los resultados requieren revisión humana
Filtrado de contenido:
Detección y bloqueo de contenido inapropiado
Límites de alcance: la IA rechaza solicitudes fuera de alcance (p. ej., temas no relacionados, asesoramiento médico/legal)
Protección contra jailbreak e inyección de prompts
Consulte el Resumen de seguridad de la IA y uso responsable para conocer las barreras de seguridad detalladas.
Requisitos de manejo de datos
Privacidad desde el diseño:
Sin uso de datos de usuario para el entrenamiento de modelos (se aplican acuerdos ZDR)
Minimización de datos: solo se procesan los datos necesarios para la recuperación y generación
Procesamiento temporal: sin almacenamiento a largo plazo de prompts/respuestas más allá de los registros de sesión del usuario
Controles de retención: períodos de retención de datos configurables por el usuario (desde 1 día hasta 7 años, o conservar para siempre)
Controles de transferencia: transferencias de datos conformes con el GDPR mediante SCC
Para conocer las prácticas integrales de manejo de datos, consulte nuestra Política de privacidad.
Pruebas de verificación y validación
Los sistemas de IA se someten a pruebas rigurosas antes de su despliegue. Ningún sistema entra en producción sin pasar la validación basada en requisitos.
Pruebas de regresión
Pruebas automatizadas ejecutadas en cada cambio de código para garantizar que la funcionalidad existente permanezca intacta.
Cobertura de pruebas:
Precisión de la recuperación: Precisión y exhaustividad frente a conjuntos de datos de referencia (ground truth)
Fundamentación de respuestas: Verificación de que los resultados citen las fuentes recuperadas
Detección de alucinaciones: Comparación con respuestas incorrectas conocidas
Benchmarks de rendimiento: Validación del tiempo de respuesta y manejo del contexto
Pruebas de seguridad
Los sistemas de IA se someten a la misma validación de seguridad que todos los componentes de la plataforma.
Canal de pruebas:
SAST (Pruebas de seguridad de aplicaciones estáticas): Escaneo de vulnerabilidades a nivel de código con integración de Semgrep
DAST (Pruebas de seguridad de aplicaciones dinámicas): Validación de seguridad en tiempo de ejecución
Pruebas de penetración: Evaluaciones de seguridad anuales realizadas por terceros
Pruebas de inyección de prompts: Validación contra entradas adversarias que intentan eludir las restricciones de seguridad
Nuestro ciclo de vida de desarrollo seguro garantiza que los sistemas de IA cumplan con los mismos estándares de seguridad que el resto de componentes. Consulte nuestras Políticas de seguridad para conocer las prácticas de prueba detalladas.
Pruebas de aceptación del usuario
La validación de escenarios del mundo real con profesionales de cumplimiento garantiza que:
Los resultados cumplan con los estándares de calidad profesional
Las respuestas sean adecuadas para casos de uso de cumplimiento
Las limitaciones se comuniquen claramente
Los mecanismos de retroalimentación sean accesibles y efectivos
Lista de verificación de validación de despliegue
Los sistemas de IA se despliegan solo después de cumplir con los requisitos documentados:
El despliegue requiere un éxito del 100% en las pruebas de regresión, escaneos de seguridad limpios (sin vulnerabilidades críticas o de alta gravedad), benchmarks de rendimiento cumplidos, documentación de usuario actualizada con limitaciones y monitorización/alertas configuradas para el seguimiento de la tasa de alucinaciones.
Los despliegues que fallan la validación se revierten hasta que se satisfagan los requisitos.
Monitorización y mejora continua
Tras el despliegue, monitorizamos el comportamiento del sistema de IA para detectar degradación, problemas emergentes o uso indebido.
Métricas de monitorización
Qué rastreamos:
Tasa de alucinaciones: Rastreada a través de informes de usuarios y detección automatizada
Precisión de la respuesta: Validación muestreada frente a estándares de cumplimiento de referencia
Patrones de uso: Detección de uso fuera de alcance o inapropiado
Métricas de rendimiento: Tiempo de respuesta, precisión de recuperación, tasas de error
Comentarios de los usuarios: Informes de impacto adverso, tickets de soporte, solicitudes de funciones
Ciclo de mejora continua
Los datos de monitorización informan las mejoras iterativas:
Bucles de retroalimentación:
Comentarios de usuarios e informes de impacto adverso → actualizaciones de modelos y ajuste de recuperación
Resultados de pruebas de seguridad → mejoras de seguridad y actualizaciones de controles
Cambios regulatorios y mejores prácticas → actualizaciones de documentación y marcos
Monitorización del rendimiento → mejoras de precisión y optimización de respuestas
Respuesta ante incidentes
Notificamos a los usuarios sobre incidentes relacionados con la IA para mantener la transparencia y la confianza.
Canales de notificación:
Alertas por correo electrónico para incidentes críticos que afecten la funcionalidad de la IA
Notificaciones de Slack para equipos suscritos
Actualizaciones en la página de estado con cronogramas de incidentes y resoluciones
Notificaciones de alerta temprana conformes con NIS2 (informe en 24 horas para incidentes de ciberseguridad significativos)
Suscríbase a nuestra página de estado para recibir notificaciones en tiempo real sobre incidentes del sistema de IA, mantenimiento y actualizaciones.
Limitaciones conocidas
Los sistemas de IA tienen limitaciones inherentes que los usuarios deben comprender para utilizarlos de manera responsable.
Limitaciones técnicas
Los resultados de la IA pueden contener imprecisiones (alucinaciones) incluso con la fundamentación RAG. Los usuarios deben verificar todos los resultados con los estándares y normativas oficiales.
Restricciones actuales:
Naturaleza probabilística: La IA genera respuestas basadas en patrones estadísticos, no en lógica determinista
Sin acceso a internet: La IA no puede recuperar información en tiempo real ni acceder a sitios web externos
Sin ejecución de código: La IA no puede realizar cálculos, ejecutar scripts ni validar implementaciones técnicas
Fecha de corte de conocimientos: El conocimiento del modelo de IA está limitado a las fechas de corte de los datos de entrenamiento (varía según el proveedor)
Límites de contexto: La ventana de contexto máxima limita la cantidad de información procesada en una sola solicitud
Límites de dominio: La IA está entrenada para cumplimiento/seguridad; el rendimiento en otros dominios no está garantizado
Para obtener limitaciones detalladas y soluciones alternativas, consulte nuestra página de Problemas conocidos.
Responsabilidad de verificación del usuario
ISMS Copilot está diseñado para ayudar, no para reemplazar, el juicio profesional:
Cotejar las sugerencias de la IA con los estándares oficiales
Validar la información crítica antes de enviarla a los auditores
Utilizar la IA como asistente de un consultor, no como sustituto de la experiencia
Ejercer el juicio profesional al aplicar las recomendaciones de la IA
Consulte Cómo usar ISMS Copilot de manera responsable para conocer las mejores prácticas de verificación.
Informes y retroalimentación
Los comentarios de los usuarios son fundamentales para la mejora del sistema de IA. Proporcionamos múltiples mecanismos para informar sobre problemas, imprecisiones o comportamientos inesperados.
Cómo informar de problemas
Impactos adversos o alucinaciones:
Vaya al menú de usuario (arriba a la derecha) > Centro de ayuda > Contactar con soporte
Incluya el prompt, la respuesta y capturas de pantalla en su informe
Espere una respuesta en un plazo de 48 horas
Informes dentro de la plataforma:
Utilice el botón "Informar de un problema" disponible en toda la plataforma para marcar respuestas específicas de la IA
Qué sucede después de informar
Revisión inmediata (en 24-48 horas): El equipo de soporte evalúa la gravedad y el impacto
Investigación: El equipo técnico analiza el problema, lo reproduce e identifica la causa raíz
Respuesta: Recibirá una actualización sobre los hallazgos y las acciones previstas
Remediación: Los problemas se abordan mediante actualizaciones del modelo, ajustes de recuperación, correcciones de código o mejoras en la documentación
Mejora continua: Las lecciones aprendidas se integran en los procesos de prueba y monitorización
Los problemas de alta gravedad (riesgos de seguridad, fugas de datos, alucinaciones críticas) se escalan de inmediato para una remediación urgente.
Consulte el Resumen de seguridad de la IA y uso responsable para obtener instrucciones detalladas sobre cómo informar.
Actualizaciones de la documentación
Las especificaciones técnicas se mantienen actualizadas cuando:
Cambian los proveedores de IA (nuevos modelos, APIs obsoletas)
La arquitectura evoluciona (nuevos componentes, métodos de validación)
Se revisan los requisitos (nuevas restricciones de seguridad, objetivos de rendimiento)
Se amplían las prácticas de prueba (nuevas técnicas de validación, herramientas de seguridad)
Las actualizaciones se comunican a través de las notas de lanzamiento y esta página de documentación. Suscríbase a nuestra página de estado para recibir notificaciones de cambios.
Siguientes pasos
Conozca las barreras de seguridad de la IA y las prácticas de uso responsable
Siga las mejores prácticas para usar ISMS Copilot de manera responsable
Obtener ayuda
Para preguntas técnicas sobre las especificaciones del sistema de IA o para solicitar documentación adicional:
Contacte con soporte a través del menú del Centro de ayuda
Informe inmediatamente sobre preocupaciones de seguridad para su investigación
Revise el Centro de confianza para obtener información detallada sobre la gobernanza de la IA
Consulte la Página de estado para ver los problemas conocidos